Fourier and Minimal Bending Analysis of Postural Sway Area
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Abstract: A new method is presented for calculation of the outline of the area of the centre of pressure (COP) tra-
jectory (sway area) for subjects standing still on a force platform. At first the outline of the COP area is determined
by detecting the points that are furtherest from the centre in a given angular interval. To this outline a Fourier series
is fitted by minimising the function that consists of squares of the differences between the calculated and measured
distances from the centre, to which the bending energy and linear terms are added. This results in a simple, smooth
outline which is predominantly outside the experimental COP area. The procedure has been successfully tested
with simulated and clinical data. It proved to be fast, simple to implement and offered great versatility by choosing
the appropriate bending and linear weighting constants.
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1 Introduction

Measurement of the centre of pressure (COP) move-
ment with a force platform (stabilometry) is a stan-
dard procedure for assessment of postural stability in
elderly and during rehabilitation. A subject stands still
on a special platform that is mounted on pressure sen-
sors transmitting data via analogue to digital converter
to a computer. With a suitable software the time de-
pendence of the trajectory of COP (sway) can be mon-
itored.

As the human balance control system depends on
feedback from the somatosensory, vestibular and vi-
sual systems, stabilometry can give clues about their
functioning. It was shown that somatosensory func-
tion declines with age[1], diabetic neuropathy and of-
ten with stroke[2], resulting in diminished motor per-
formance. In these cases it was suggested that intro-
duction of input noise by vibrating insoles can im-
prove balance control[3, 4]. An intensive research ef-
fort in stabilometry resulted also in developing quanti-
tative models that take into account integration of var-
ious sensory inputs in postural control[5].

From the measured COP trajectory simple statis-
tical parameters related to the distance and velocity of
COP are usually determined. Quite often it is also of
interest to compare the areas within which the move-
ment of COP is confined[6]. In this case the princi-
pal component analysis (PCA) of the covariant matrix
may be used.[7] Here the eigenvalues (O’%) are calcu-

lated from the covariant matrix agy:
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where T and 7 are the mean values and the summation
is done over all N measured points.
The two eigenvalues are thus
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The sway area may be then reproduced by an el-
lipse with the two principal axes 1.960 at the angle ¢
[7]:
o2
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Sometimes it is also convenient to analyse the sta-
bilometric data in terms of concepts related to statisti-
cal mechanics, such as random walk model[8].

Thus, for given conditions, it is very important to
select the most appropriate analysis of the trajectory.
In this paper a new method for the calculation of the
outline of the COP movement area is presented. The
outline of the COP area is determined by detecting
the points that are furtherest from the centre in a given
angular interval. To this outline Fourier series is fitted
by minimising the characteristic function. It is con-
structed as the usual sum of the square differences of
the distances from the centre to which the linear and
outline bending terms are added.



Obtained Fourier coefficients are similar to the
Fourier descriptors usually employed in shape recog-
nition [9, 10, 11]. The difference is that our contour
points are function of the angle rather than the dis-
tance along the contour path. Although other shape
description measures, such as moments or even simple
compactness, were sometimes equivalent to Fourier
descriptors [12] our choice was motivated by the ease
of interpretation of the results and the possibility of
simple bending energy and asymmetric fitting, as de-
scribed below.

The described procedure has been successfully
tested with simulated and clinical data.

1.1 Methods

Experimental data were collected by a force platform
(Kistler 9286AA) using Bioware software. Raw data
were copied to a Linux server where a system for data
analysis had been developed. Such central data pro-
cessing greatly simplified software maintenance and
development. The user interface was written in PHP
using Apache web server. It controls user logins, data
uploads and calls shell scripts and specially developed
programs for data analysis and manipulations.

The typical analysis of the stabilometry data starts
by optional data smoothing by calculating moving av-
erage over chosen number of points. It then proceeds
by plotting time and frequency distribution diagrams,
and finishes by calculating areas and other parameters.

Most of the calculations were preformed on a
Pentium IV computer running under Linux operating
system. The programs were mostly written in Fortran
and C whereas data plotting is done by the Gnuplot
program.

By data simulations the portable pseudo-random
number generator Ran3, based on a subtractive
method, was used [13, 14]. It has a very long pe-
riod and no evident defects. To eliminate the possible
implementation defects the program was thoroughly
statistically tested using standard methods [15].

1.2 Determination of the sway area contour

To determine the sway area contour all data points are
converted into polar coordinates by calculating their
distance R; from the centre (, ¥ ) and the respective
polar angle ¢;. The full angle then is divided into cho-
sen number of intervals, depending on the number of
data points and required precision. For our measure-
ments usually 50 intervals were sufficient. In each
angular interval the point that is furtherest from the
centre is determined. These points represent the first
approximation for the sway area outline (Fig. 1). It
must be noted that such an outline is uniquely defined

for every selected angular value i.e. for every angle
the radial vector from the centre crosses the outline
only once.

In stabilometry we are usually not interested in
detailed structure of the measured area but want to get
some information about the region of support. This is
the region where the COP could travel during the ex-
periment while the subject maintained upright stance.
This could be in principle obtained by prolonging the
measuring time, but because of subject fatiguing ef-
fects such results would be of little use. A suitable
approximation to the sway area is thus a region de-
termined by a rather simple, mostly convex outline
which is predominantly at the outer border of the area.
As will be shown below, such an outline can be eas-
ily reproduced by Fourier analysis, considering also
outline bending energy (Fig. 2).
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Fig. 1. An example of a measured sway area with out-
line determined by 50 points. The ellipse was deter-
mined by principal component analysis. The subject
was 65 year old female, regularly exercising, standing
on compliant, flat surface with open eyes.
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Fig. 2. The same experimental data as in Fig. 1, fitted
with Fourier coefficients up to m = 10, as described
in text, without bending (inner corrugated outline) and
with w = 0.1 and v = 0.001 (outer smooth outline).

1.3 Fourier coefficients of the contour

The smooth sway area outline can be conveniently ex-
pressed in polar coordinates R(¢), where R is the dis-
tance from the chosen origin of the coordinate system
to the outline point at a given polar angle ¢[16].
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where A, and B,, are the appropriate Fourier coeffi-
cients and m,,q; the maximal number of coefficients
used to describe the outline. The more coefficients are
chosen, the smaller details of the shape can be repro-
duced.

There are various methods to obtain Fourier coef-
ficients from the determined sway area outlines. Since
we wanted to include in fitting procedure also the
bending energy and linear term we decided for the
most straightforward method - minimising the func-
tion (F):
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The first term is the usual sum of the squares
of the differences between the calculated and exper-
imental points. The second, linear, term takes care
for slight asymmetry in fitting by preferring the points
that are further from centre than the experimental ones
if w is positive. It was multiplied by the average value
R, so that the constant w does not depend on outline
size.

The last term in eq.(5) is related to the outline
bending energy. It is constructed similarly to the
bending energy of thin membrane of a vesicle which
is in three dimensions [17]:
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where k. stands for the membrane bending modulus,
C} and CY are the principal curvatures of the mem-
brane, and the integration is done over its neutral sur-
face. If the curvatures are small only the second or-
der terms may be considered, yielding the fourth order
dependence in coefficients[18]. The form of bending
energy must not depend on rotation of the coordinate
system, thence [A2, + B2,] term, and must vanish for
m = 0 and m = 1. The positive parameter y deter-
mines the relative importance of this term. The larger
it is, the more are higher m modes penalized in F'
and thus the simpler becomes the calculated outline.
In the limiting case v may be very large and the ob-
tained outline becomes spherical, whereas at v = 0 all
modes are equally weighted and the calculated outline
follows the experimentally determined one.

Fitting was done by minimising the function F' of
eq.(5) and considering fA—F =0and % = 0.
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If we also use the expansion of R(¢) as given
by eq.(4), these relations give a system of equations
that is represented by a matrix equation where the left



hand side is a of the type ;X X, whereas the
right hand side is 3, X,, with X,,, standing for A,,, or
B,

Such a system can be easily solved by the method
of LU decomposition [14]. It decomposes the matrix
into the product of a lower and an upper triangular
one from which the solutions can be calculated by a
simple substitution.

1.4 Simulated data

Our procedure was tested by simulated and clinical
data. Simulated data are advantageous for testing as
their shape is well defined and the results are known in
advance. But they must be as similar as possible to the
experimental ones. For this reason our data were cal-
culated by considering completely free random move-
ment of the COP within a chosen ellipsoidal region
and with Boltzmann distribution outside. For this pur-
pose random walk procedure was used combined with
Metropolis algorithm[19]. In each step the COP posi-
tion was randomly moved. If the resulting position
was within the chosen ellipsoidal region it was ac-
cepted and the procedure was repeated. But, when the
resulting position was outside the region and the pre-
vious one was inside, the distance (A R) from the bor-
der was calculated. Such a move was accepted only
with the probablility e~ (AR)?/T where (AR)? plays
the role of energy and is proportional to the square of
the distance ((AR)?), whereas T corresponds to the
temperature. The procedure was similar also in the
case when the previous point was outside, too. In this
case the calculated value AR was the difference be-
tween the distances from the area centre of the two
points. If AR was negative, the move was accepted,

otherwise it was accepted only with the probability
e__(ZX}%)2/]n'

The procedure started with a point somewhere in-
side the ellipsoidal region and the first few thousand
points were rejected to allow the system to thermal-
ize.

This description is equivalent to the movement
of a particle in a potential which is flat in the cen-
tral ellipsoidal region and quadratic outside. In such
a way COP can move outside the chosen region, but
the probability of finding it outside decreases with dis-
tance from the boundary whereas parameter T defines
this probability.
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Fig. 3. Simulated data for 7" = 0.5 and the ellipsoidal
region with ¢ = 1.0 and b = 0.5 fitted with with
Fourier coefficients up to m = 10. The inner ellip-
soidal outline was determined by the principal com-
ponent analysis.
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Fig. 4. The same data as in Fig. 3 fitted with w = 0
and v = 1074,
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Fig. 5. The same data as in Fig. 3 fitted with w = 0
and v = 1073,
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Fig. 6. The same data as in Fig. 3 fitted with w = 0
and v = 1072,
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Fig. 7. The same data as in Fig. 5 fitted with v =
1073 and w = 0. The outer outline was obtained by
setting w = 0.2.

2 Results and Discussion

An example of the simulated data are shown in Figs.
3 to 7 together with the outlines calculated by the de-
scribed procedure for different values of the bending
weight parameter (). It is seen that the calculated
outline gets more spherical as the parameter vy in-
creases. To sufficiently describe the experimental data
it was found that the values of about v = 1073 can
be used. Here described procedure results in a nearly
convex outline as required for the interpretation of ex-
perimental data. This method is much simpler and
formally correct than the procedure of elimination of
concave points in the outline[6].

The inner ellipsoids in all shown figures were
calculated by the principal component analysis. As
expected this gives smaller area as it encompasses
only 85.35 % of all points when the distribution is
normal[7].

The influence of linear term weight (w) is evident
from Fig. 7. As expected from eq.(5) increasing w
moves the calculated outline further away from the
experimentally determined COP region. In contrast
to asymmetric fitting [6] this method is much simpler,
faster and gives quite similar results.



3 Conclusion

It was shown that Fourier analysis of the sway area
contour is very suitable for data interpretation. It gives
not only the value of the sway area but also some
information about its shape. Although this method
is limited to the shapes that have a uniquely defined
contour as a function of polar angle, this is not a
limitation in real situations where the movement of
COP over supporting surface is studied. Namely, here
nearly convex sway area contour is usually of interest.
Thus, expressing the outline in terms of Fourier coef-
ficients proved to be very suitable for determination of
outlines with reduced bending and situated predomi-
nantly outside the sway area.

All the described computer programs are avail-
able from the author upon request.
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