
 

 1 

Provided for non-commercial research and educational use only. 

Not for reproduction, distribution or commercial use. 

 
This chapter was originally published in the book “Advances in Planar Lipid 

Bilayers and Liposomes,” Vol. 12, published by Elsevier, and the attached copy is 

provided by Elsevier for the author's benefit and for the benefit of the author's 

institution, for non-commercial research and educational use including without 

limitation use in instruction at your institution, sending it to specific colleagues who 

know you, and providing a copy to your institution’s administrator. 

 

 
 

All other uses, reproduction and distribution, including without limitation commercial 

reprints, selling or licensing copies or access, or posting on open internet sites, your 

personal or institution’s website or repository, are prohibited. For exceptions, 

permission may be sought for such use through Elsevier's permissions site at: 

http://www.elsevier.com/locate/permissionusematerial 

 

From: France Sevsˇek, Membrane Elasticity from Shape Fluctuations 

 of Phospholipid Vesicles, In Dr. Alesˇ iglic and Dr. H.T. Tien editor: 

 “Advances in Planar Lipid Bilayers and Liposomes,” Vol. 12. 

Burlington: Academic Press, 2010, pp.1-20. 

ISBN: 978-0-12-381266-7 © Copyright 2010, 

Elsevier Inc. Academic Press. 

http://www.elsevier.com/locate/permissionusematerial


Author's personal copy
C H A P T E R O N E
A

IS

F

*

dvance

SN 1

aculty

Corr
E-ma
Membrane Elasticity from Shape
Fluctuations of Phospholipid Vesicles

France Sevšek*
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Abstract

Thermal shape fluctuations of nearly spherical phospholipid vesicles are stud-

ied by Monte Carlo calculations. The constraints of constant volume and surface

area are treated in two ways: (i) by strictly considering only the phase space of

the allowed shapes and (ii) by adding the appropriate elastic term to the energy.

In the limit of high elastic constants, the two approaches yield the same results,

which also agree well with the predictions of the effective tension approxima-

tion. The importance of the cutoff value ‘max is shown. The “elastic approach”

allows us to establish the transition from a free fluctuation regime to a

constrained one.
vier Inc.

reserved.
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1. Introduction

Phospholipid vesicles have been intensively studied as a model for
biological membranes and also for their own sake. They are usually cate-
gorized on the basis of their size, as small (<50 nm), large (50–1000 nm),
and giant vesicles (>1 mm). According to their membrane thickness, they
can be unilamellar if the membrane is composed of a single bilayer or
multilamellar, when the membrane is made of a number of bilayers entrap-
ping some of the solvent [1].

Giant unilamellar vesicles (GUV) with the radius in the micrometer
range, which are the object of interest in this work, can be quite easily
prepared and can be readily observed by optical microscopy and manipu-
lated by micropipettes. This is a system at the border between the micro-
scopic and the macroscopic worlds. As structures delimited by very thin
fluid membranes, they exhibit some interesting properties, including shape
fluctuations, that are driven by the thermal energy. They have been used as
model systems for studying the dynamics and structural properties of many
cellular processes, particularly those related to membrane elastic properties
[2]. Phospholipid vesicles have also been applied as a means for the encap-
sulation [3] and transport of different molecules within a living organism.

Phospholipid vesicles form spontaneously in water when a thin film of
amphiphilic phospholipid molecules closes upon itself minimizing the energy
due to the membrane rigidity and the one arising from the edge tension [4].
There exist a variety of classical experimental methods to prepare phospho-
lipid vesicle suspensions [1]. For experimental purposes, giant vesicles of up to
50 mm radius are usually prepared by hydrating a thin phospholipid film that is
formed by spreading a chloroform/methanol solution of phospholipid to a
substrate and subsequently allowing the solvent to evaporate under reduced
pressure. Applying very low frequency voltage to the solution of the nascent
vesicles has been shown to greatly enhance the hydrating process and increase
the number of monolayer vesicles [5,6].

The phospholipid membranes are virtually an incompressible and
impermeable two dimensional liquid. The shape of a phospholipid vesicle
is thus mainly controlled by the bending elasticity of the membrane [7].

The bending modulus (kc) of the phospholipid membrane as introduced
by Helfrich [7] can be determined experimentally by observing the shape
fluctuations of vesicles. The standard technique is to observe the vesicles by an
inverted optical microscope using phase contrast technique. Using an attached
CCD camera, digitizing hardware, and suitable software, a large number of
images of a fluctuating vesicle are recorded. Their shapes can be then deter-
mined by an outline, following algorithm [8]. Such a procedure is essentially
limited by the finite integration time of the camera and the space resolution of
the CCD sensor. These effects must be considered in the final analysis [9].
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By the Fourier analysis of the vesicle cross-sections, the mean square
amplitudes of the normal-mode displacements u2m

� �� �
are determined as a

function of wave numbers [8,10–12]. Fitting the calculated values of u2m
� �

to these data yields the value of kc.
Traditionally, the effective tension approach, as introduced by Milner

and Safran [13], is used to analyze the shape fluctuations of nearly spherical
vesicles. It is based on the spherical harmonics expansion of the vesicle shape
deviations from a sphere where only the second-order terms are retained. In
this approximation, the mean square amplitudes of the fluctuational modes
are inversely proportional to the fourth power of the wave number (‘�4).
The equilibrium tension is interpreted as an effective tension that is treated
as a fitting parameter. In this way, the bending moduli (kc) of a wide range of
phospholipids have been determined. As there is quite a variation between
the reported results, it seems that the measured values depend not only on
the type of phospholipid used, but also on the experimental procedure
where the data collection and the theoretical approximation used in the
analysis are of the utmost importance. It is thus of special interest to
investigate the validity of the latter.

From mechanical experiments [14], it is known that the value of the
membrane expansivity modulus is so large that thermal excitations cannot
measurably alter the membrane surface area. Furthermore, as a result of
osmotically active molecules that are always present, the transmembrane
pressure difference is very sensitive to small volume changes. It is thus
reasonable to expect that the volume of a vesicle and the surface area of its
membrane remain constant during the observation time. For this reason,
thermal fluctuations of phospholipid vesicles at constant volume and the
membrane area are of principal interest. In general, this problem does not
seem to have a simple analytical solution. The most straightforward
approach is by Monte Carlo method. Bivas et al. [15] preformed the
calculations for a small range of volume to area ratios and limiting the
procedure exclusively to ‘max ¼ 20 spherical harmonic terms in the expan-
sion of nearly spherical vesicle shapes. As the later theoretical work by
Seifert [16] indicated the importance of the number of the spherical har-
monic terms ‘max, more detailed investigation of these fluctuations began to
be carried out. Later, the analysis of Pécreaux et al. [9] showed that the high
wave number modes did not depend on the actual vesicle shape and could
be reliably determined experimentally. In studying biological membranes,
more complicated systems began to attract interest: membranes with
embedded proteins [17] and those with nanotubular protrusions [18].
In general, non-equilibrium vesicles and the ones with active proteins in
the membrane [19] are expected to exhibit different fluctuation spectra.

In the present work, we combine the second-order approximation for
the vesicle shape with the constant volume and area constraints using the
Monte Carlo method for a large range of cutoff values (‘max) as well as
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volume to area ratios. We start by defining the basic relations for a vesicle of
a nearly spherical shape and introduce the effective tension in a simple way.
Here, we mainly follow the well-established path. The introductory part of
this work is concluded with a short discussion on the Monte Carlo method.
Two approaches to Monte Carlo calculations of thermal fluctuations are
then presented. The “delta function approach” treats the constant volume
and area requirement strictly by limiting the phase space to only those shapes
that do not violate the constraints. Using the “elastic approach”, we under-
stand the treatment of the constraints by considering additional elastic terms
in the energy of a vesicle. The two approaches are expected to yield the
same results in the limit of large elastic constants. This is shown to be indeed
the case. In the final section, we also compare our Monte Carlo results with
the effective tension approximation. It is to be noted that such a procedure
can be easily extended to more complicated cases of fluctuating vesicles.
2. Nearly Spherical Vesicles

2.1. Vesicle Shape

The shape of a nearly spherical vesicle is conveniently expressed in terms of
spherical harmonics

R y;fð Þ ¼ Rs 1þ
X‘max

‘¼0

Xm¼‘

m¼�‘

u‘mY‘m y;fð Þ
 !

; ð1Þ

where R(y, j) is the distance from origin of the coordinate system to the
membrane and the constant Rs is introduced in such a way that all coeffi-
cients are small. In what follows, the origin of the coordinate system is
chosen to be at the geometrical center of the membrane, and Rs is defined as
the radius of the equivalent sphere, that is, the radius of the sphere with the
same unstretched surface area as the studied vesicle. Y‘m(y, j) are normal-
ized spherical harmonics:

Y‘m y;jð Þ ¼ N‘mP‘m cosyð Þeimj; ð2Þ

with P‘m(cos y) being the associated Legendre functions and

N‘m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4p
‘� jmjð Þ!
‘þ jmjð Þ!

s
ð3Þ

the appropriate normalization factors.
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The coefficients u‘m are complex numbers:

u‘m ¼ a‘m þ ib‘m: ð4Þ
As the distance R(y, j) in Eq. (1) is real, the coefficients are interrelated

a‘;�m ¼ �1ð Þma‘m; b‘;�m ¼ � �1ð Þmb‘m: ð5Þ
Thus for each ‘, there are 2‘ þ 1 independent coefficients. In this chapter,
we prefer to use the real coefficients that are defined as

x‘m ¼ a‘m
ffiffiffi
2

p
; x‘;�m ¼ b‘m

ffiffiffi
2

p
ð6Þ

for m > 0 and x‘0 ¼ a‘0. With this notation we get

u‘mu
�
‘m ¼ 1

2
x2‘m þ x2‘�m

� �
for m > 0 ð7Þ

u2‘0 ¼ x2‘0: ð8Þ
Because in the second-order approximation, there is no dependence on
index m (see below), it is convenient to define

u2‘ ¼
Xm¼‘

m¼�‘

u‘mu
�
‘m ¼

Xm¼‘

m¼�‘

�1ð Þmu‘mu‘;�m ¼
Xm¼‘

m¼�‘

x2‘m: ð9Þ

Experimentally, only the cross-section of a fluctuating vesicle can be
observed under the microscope. For vesicles of nearly spherical shapes this
cross-section can be approximated by the equatorial one which is simply
obtained from Eq. (1) by taking y ¼ (p /2).

R y ¼ p
2
;j

 !
¼ Rs 1þ

X‘max

‘¼0

Xm¼‘

m¼�‘

u‘mN‘mP‘m 0ð Þeimj
 !

¼ Rs 1þ
Xm¼‘max

m¼�‘max

eimj
X‘max

‘¼jmj
u‘mN‘mP‘m 0ð Þ

0
@

1
A

¼ Rs 1þ
Xm¼‘max

m¼�‘max

eimjum

 !
:

ð10Þ

The Fourier coefficients of the observed cross-section are thus

um ¼
X‘max

‘¼jmj
u‘mN‘mP‘m 0ð Þ: ð11Þ
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The appropriate values of the associated Legendre functions can be calcu-
lated as [20]

P‘m cosp=2ð Þ ¼ P‘m 0ð Þ ¼ 2jmj
1ffiffiffi
p

p cos
p
2

‘þ mð Þ
h i G ‘

2
þ jmj

2
þ 1

2

� �
G ‘

2
� jmj

2
þ 1

� � ð12Þ

2.2. Elastic Energy of a Vesicle

The elastic energy of a phospholipid vesicle can be generally expressed as
[21]

W ¼WBþ 1

2

K

A0

A�A0ð Þ2þ 1

2

KV

V0

V �V0ð Þ2þ 1

2

Kr

A0

DA�DA0ð Þ2; ð13Þ

where WB is the energy due to the pure bending of the phospholipid
membrane, and the next three terms represent the energy due to the
isotropic lateral extension of the bilayer, the vesicle volume change, and
the relative expansion of the two membrane monolayers, respectively. K,
KV, and Kr are the appropriate elastic constants, and A0, V0, and DA0 the
surface area, volume, and the area difference between the two monolayers,
in the relaxed state.

The bending energy of a thin symmetric phospholipid bilayer is
expressed as [7]

WB ¼ kc

2

I
C1 þ C2ð Þ2dA; ð14Þ

where kc stands for the membrane bending modulus, C1 and C2 are the
principal curvatures of the bilayer, and the integration is done over the
neutral surface of the lipid bilayer.

For vesicles of nearly spherical shapes, we can calculate the bending
energy by inserting the spherical harmonics expansion (Eq. (1)) into
Eq. (14) and neglecting all terms of higher than quadratic order in coeffi-
cients u‘m. With this second-order approximation, the bending energy
becomes [13,22]

WB ¼ 8pkc 1þ 1

16p

X‘max

‘¼0

l‘ l‘ � 2ð Þu2‘
" #

; ð15Þ

where l‘ � ‘(‘ þ 1).
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In the same way, the surface area (A), volume (V), and the area differ-
ence (DA) between the two layers of a vesicle can be calculated. If they are
normalized relative to a sphere with radius Rs, we get

a ¼ A

4pR2
s

¼ 1þ 2u0ffiffiffiffiffi
4p

p þ 1

8p

X‘max

‘¼0

l‘ þ 2ð Þu2‘ ; ð16Þ

n ¼ V
4
3
pR3

s

¼ 1þ 3u0ffiffiffiffiffi
4p

p þ 6

8p

X‘max

‘¼0

u2‘ ; ð17Þ
Da ¼ DA
8pRsh

¼ 1þ u0ffiffiffiffiffi
4p

p þ 1

8p

X‘max

‘¼0

l‘u2‘ : ð18Þ
Here, h is the distance between the neutral planes of the two phospholipid
layers.

From Eqs. (16)–(18), we see that in this approximation a, u, and Da are
not independent. Their relation is

Da ¼ a� n� 1ð Þ=3: ð19Þ
Thus, for the shape of nearly spherical vesicles, we need to consider only the
normalized surface area and the volume of the vesicle as independent
parameters.
3. Effective Tension

The equilibrium shape of a nearly spherical elastic vesicle can be easily
determined by the minimization of Eq. (13). For nearly spherical vesicles,
we can neglect all terms of a higher than second order in u‘m, together with
u0

2. We define the membrane surface tension (S), pressure (P), and the
tension due to relative area difference (SD) in the usual way

S ¼ K

A0

A� A0ð Þ; P ¼ KV

V0

V � V0ð Þ; SD ¼ Kr

A0

DA� DA0ð Þ: ð20Þ

At the equilibrium, we get from @W/@u0 ¼ 0 the following relation:

2RsSþ R2
s P þ 2hSD ¼ 0: ð21Þ

With this expression, we can introduce the generalized equilibrium tension as

g � �R2
s Sþ RsPð Þ ¼ R2

s Sþ h

Rs

SD

	 

; ð22Þ

so that at equilibrium we obtain for ‘ 6¼ 0:
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@W

@u‘m

	 

eq

¼ u‘m l‘ � 2ð Þ kcl‘ þ gð Þ ¼ 0: ð23Þ

It is worth noting that the generalized equilibrium tension of Eq. (22) reduces
to the well known expression [16] if the energy term due to the relative
stretching of the two monolayers is omitted (i.e., Kr ¼ 0): g ¼ Rs

2S.
From Eq. (23), we see that for ‘ � 2, only one coefficient u‘ can be

nonzero at equilibrium: the one for which kcl‘ ¼ �g. As for the other
coefficients, the second derivative of the elastic energy is

@2W

@u2‘m

	 

eq

¼ l‘ � 2ð Þ kcl‘ þ gð Þ; ð24Þ

And the stable equilibrium state is obtained with only nonzero coefficients:
u0 and u2m. The generalized equilibrium tension is thus g ¼ �6kc.

From this, the mean square amplitudes of the spherical harmonic modes
u2‘m
� �� �

due to thermal fluctuations about the equilibrium shape can be
easily estimated. If the fluctuational amplitudes are small, the elastic poten-
tial can be considered as harmonic, determined by Eq. (24). If there is no
interaction between different spherical harmonics modes, the values of
u2‘m
� �

are calculated using the equipartition theorem as

u2‘m
� � ¼ kT

l‘ � 2ð Þ kcl‘ þ gð Þ ; ð25Þ

Combining Eq. (25) with Eq. (11), the mean square amplitudes of the
Fourier coefficients of the equatorial cross-section are determined as

u2m
� � ¼ kT

X‘max

‘¼jmj

N 2
‘mP

2
‘m 0ð Þ

l‘ � 2ð Þ kcl‘ þ gð Þ : ð26Þ

We can extend this treatment to the fluctuations at constant (average)
volume and surface area. This is done by replacing the generalized equilib-
rium tension g by an effective tension parameter s/kc in such a way that
Eq. (25) will give the correct volume and surface area if inserted into
Eqs. (17) and (16) [15]. The effective tension parameter (s) thus depends
also on the number of spherical harmonics expansion terms (‘max). It is
always larger than the equilibrium tension g/kc ¼ �6 and tends to infinity
as the volume approaches that of a sphere (u ¼ 1). The meaning of the
cutoff value ‘max and its relation to the membrane tension is similar to
Debye temperature in solid state physics. If we insist on harmonic potential
for all the wave lengths, as small as they are, some artificial cutoff value must
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be introduced to compensate for this approximation. That is, as the wave
lengths become smaller, the thin membrane and continuum approximations
break down, and the simple harmonic treatment cannot be extended so far.
Anyhow, the cutoff value ‘max is still a meaningful parameter that, together
with the normalized volume, characterizes the vesicle.

The results of this “effective tension approximation” are included in
Figs. 1–3, where they are represented by solid lines.
0

v0= 0.99

v0= 0.97

v0= 0.95

0

0.05

0.1

0.15

0.2

<
u 2

2 >

20 40
�max

60 80 100

Figure 1 Dependence of u22
� �

on ‘max for normalized volumes 0.95 (squares), 0.97
(empty squares), and 0.99 (triangles) as calculated by the Monte Carlo method for
kc ¼ 10�19 J and T ¼ 300 K. The solid lines were obtained by the effective tension
approximation.

0
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0.002
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<
u 32 >

20 40

v0= 0.99

v0= 0.97
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60
�max

80 100

Figure 2 Dependence of u23
� �

on ‘max for normalized volumes 0.95 (squares), 0.97
(empty squares), and 0.99 (triangles) as calculated by the Monte Carlo method for
kc ¼ 10�19 J and T ¼ 300 K. The solid lines were obtained by the effective tension
approximation whereas the dashed line represents the effective tension approximation
for s ¼ �6.
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Figure 3 Dependence of u24
� �

on ‘max for normalized volumes 0.95 (squares), 0.97
(empty squares),and 0.99 (triangles) as calculated by the Monte Carlo method for
kc ¼ 10�19 J and T ¼ 300 K. The solid lines were obtained by the effective tension
approximation whereas the dashed line represents the effective tension approximation
for s ¼ �6.
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Author's personal copy
Equation (26) is usually used to analyze the experimental data, where kc
and s are treated as fitting parameters. For vesicles that exhibit detectably
large fluctuations, s is normally obtained in the range of �6 to about 100.

This treatment is expected to be valid for vesicles that are sufficiently
nonspherical so that the fluctuations are confined mostly to the vicinity of
the equilibrium state but are still close enough to being spherical to justify
the second-order approximation.

The other limiting case, when the vesicle shape approaches the spherical
one, can also be determined. When it is close to being spherical, the
fluctuations are governed predominantly by the two constraints, and the
bending energy can be neglected. Using the same procedure as outlined
above, one gets by setting kc ¼ 0:

u2‘m
� � ¼ kT

l‘ � 2ð Þg : ð27Þ

Eliminating u0 from the two constraints (Eqs. (17) and (16)) and considering
that the excess area is equally distributed [13] among all N ¼ (‘max þ 1)2�4
available modes, we get from Eq. (27)

g ¼ 3NkT

16p 1� u0ð Þ : ð28Þ

Thus, for vesicles close to a spherical shape, the effective tension is expected
to be proportional to ‘max

2 [16].
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4. Metropolis Monte Carlo Calculation

The Monte Carlo method studies thermodynamic systems by sto-
chastic computer simulation [23,24]. It is devised such that the trajectory
in the phase space probes mainly those states that are statistically most
important.

If the state of a phospholipid vesicle is determined by a set of coefficients
x‘m (configuration x) and has the energy E(x), then the thermodynamic
average of A(x) is

Ah i ¼
Ð
O A xð Þe�E xð Þ=kTdxÐ

O e�E xð Þ=kTdx
; ð29Þ

where the (‘max þ 1)2 dimensional integration is over the allowed phase
space volume O.

For any large non-trivial system, the total number of possible config-
urations is very large, and straightforward sampling of configurations in
Eq. (29) is not possible. Here, the Monte Carlo method proves to be useful.

In this work, we consider two approaches to treat the constant volume
and area constraints. Using the first one, which we call “delta function
approach”, we limit the available phase space by calculating two variables
chosen a priori from the constraints, whereas when using the second,
“elastic” approach, we consider the vesicle to be elastic, with large energy
penalties imposed on the vesicle surface area and volume changes. We shall
see that the results of both methods agree well.
4.1. Delta Function Approach

In Eq. (29), the integration must be done over the whole phase space, which
is allowed by the constant volume and surface area constraints. The most
straightforward approach is to replace in the integrals two variables (e.g.,
xL1M1 and xL2M2) by the integration over volume and area.ð

O

A xð Þe�E xð Þ=kTdx ¼
ð
d u� u0ð Þd a� a0ð ÞA xð Þe�E xð Þ=kTdx ð30Þ

ð
O

A xð Þe�E xð Þ=kTdx ¼
ð
d u� u0ð Þd a� a0ð ÞA xð Þe�E xð Þ=kTdx

0
Jduda ð31Þ
where dx0 stands for the integration over remaining x‘m variables and J is the
absolute value of the Jacobian determinant.
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Author's personal copy
J ¼ @xL1M1

@a

@xL2M2

@u
� @xL1M1

@u
@xL2M2

@a

����
����: ð32Þ

Besides the constant volume and area, the three coefficients x1m are also
constant. They are set to zero to ensure that �x ¼ �y ¼ �z ¼ 0, which is
identical to choosing the origin of the coordinate system in the membrane
geometrical center. The shape of a vesicle is thus defined by a, u, and
(‘max þ 1)2 � 5 coefficients x‘m. At the beginning of every Monte Carlo
calculation, we arbitrarily choose two pairs L1, M1 and L2, M2. The
coefficients corresponding to them are treated as dependent variables and
are in each Monte Carlo step calculated from a and u and all the remaining
coefficients.

At every step, a coefficient x‘m is randomly picked from (‘max þ 1)2 � 5
possible ones. Its value is changed from x‘m to x‘m þ d, where d is chosen
randomly in the predetermined interval (�z‘m, z‘m). The appropriate values
of xL1M1 and xL2M2 are then calculated. If both these values are real, the
standard Metropolis procedure is applied, using Eq. (15) to calculate the
change of bending energy DWB. If DWB is negative, the new configuration
is accepted. But when DWB is positive, the change is accepted with the
probability e � (DWB / kT). For this purpose, a random number is chosen
between 0 and 1, and the new configuration is accepted only when this
number is less than e � (DWB / kT). Otherwise, the new configuration is
rejected and the previous one is counted once more. The values of the
intervals z‘m are chosen in such a way that the acceptance rate is about (1/2).

After a large number of steps, the trajectory thus generated samples the
configurations in accordance with the canonical Boltzmann distribution of
configurations [24]. We can thus calculate the needed average values by
a simple arithmetic averaging of the appropriate values (e.g., x‘

2(i)) multi-
plied by the absolute value of the Jacobian ( Ji) at every visited point of
the phase space.

x2‘
� � ¼Xi¼N

i¼1

x2‘ ið ÞJi
.Xi¼N

i¼1

Ji: ð33Þ

The first N0 steps were rejected in order to reduce the dependence on
the initial values. Then the averages were calculated for N steps, with N0

typically being 105 to 106, and N from 107 to 108 steps. Of N calculated
configurations, typically 100 equally spaced ones were stored. From them,
the standard deviations of the parameters were calculated, and the plot of
stored values was used to monitor whether the fluctuations were well
thermalized.

At every Monte Carlo step, we also calculated the values of um
2 using

Eq. (11). This yielded the average values of the square Fourier coefficients of
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the vesicle cross-section. These correspond to the experimentally obtainable
data and can, alternatively, also be calculated from the u2‘m

� �
values.

Most of the calculations were preformed on a PC type computer using
Linux operating system. In these calculations, the portable pseudorandom
number generator Ran3, based on a subtractive method, was used [25,26].
It has a very long period and no evident defects. To eliminate the possible
implementation defects, a thorough statistical test of the program was
performed [27].
4.2. Elastic Approach

Except for the three x1m variables fixing the origin of the coordinate system,
all the remaining (‘max þ 1)2 � 3 ones are considered to be independent.
The two constraints are taken into account by adding to the vesicle energy
an “elastic” term as in Eq. (13).

W ¼ WB þ ka a� a0ð Þ2 þ ku u� u0ð Þ2: ð34Þ

The fluctuational spectra are calculated by the standard Metropolis
procedure as described in the previous section. This approach enables us
to study systematically the influence of the elastic constants on the thermal
fluctuation spectra. Anyhow, without much loss of generality, we report in
this work only the cases when the two elastic constants ka and kuwere taken
to be equal.
5. Results and Discussion

Calculations have been performed for a vesicle with the membrane
bending modulus kc ¼ 10�19 J, a typical value for phospholipid bilayers [6].
As stated above, the normalized surface area was chosen to be a0 ¼ 1. The
vesicle shape fluctuations were thus determined only by the normalized
volume (u0), which was varied from 0.95 to 0.999.

At first, we studied the influence of the cutoff number of expansion
coefficients (‘max) on the calculated mean square values of the spherical
harmonics modes. By varying ‘max from 5 to 100, we noticed that all the
calculated values of u2‘

� �
showed a clear dependence on ‘max. It was more

pronounced for more spherical shapes, that is, for those with larger u0, as
seen in Figs. 1–3. Here, the points represent the results of the Monte Carlo
calculation by the “delta function approach” while the lines were obtained
by the effective tension approximation as described above. The striking
agreement indicates that these two approximations are very similar.
The discrepancy is noticed mostly for quite flaccid vesicles. When a vesicle
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is sufficiently deformed to have large excess of area, as for instance at
u ¼ 0.95, its fluctuations are expected to be confined principally to the
vicinity of its equilibrium shape which is defined by the coefficients u0 and
u2. The mean square value of the coefficient u2 is composed of static and
fluctuational part. It is thus not surprising that u22

� �
as calculated by the

Monte Carlo method is slightly larger than the one given by the effective
tension approximation. This is evident from the top curve in Fig. 1. In the
case of quite flaccid vesicles, the Monte Carlo values of u2‘

� �
for ‘ > 2 are,

for small ‘,closer to those obtained by s ¼ �6 (dashed lines in Figs. 2 and 3)
than to those given by the effective tension approximation. It is
also interesting to note that the Monte Carlo u2‘

� �
values calculated for

‘max ¼ 20 agree well with those given in [15], although their procedure was
slightly different from ours.

The results of the “elastic”Monte Carlo calculations are shown in Figs. 4
and 5 for two different volumes. Note that, for the sake of clarity, the scale
of the horizontal axis is logarithmic. Here, the dependence of the ampli-
tudes of spherical modes on the elastic constants ka and ku was studied.
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Figure 4 The results of the Monte Carlo calculation for u0 ¼ 0.95. Points were
obtained by the “elastic approach” for ‘max ¼ 20 as a function of the elastic constants
(k � ka ¼ ku). The dashed lines are the result of the “delta function approach,” whereas
the dotted ones represent the free fluctuation regime.
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Figure 5 The results of the Monte Carlo calculation for u0 ¼ 0.99. Points were
obtained by the “elastic approach” for ‘max ¼ 20 as a function of the elastic constants
(k � ka ¼ ku). The dashed lines are the result of the “delta function approach,”
whereas the dotted ones represent the free fluctuation regime.
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For the reason of simplicity, the two constants were always chosen to be
equal (k � ka and ku). As expected, for a given normalized volume (u) and
cutoff (‘max), there are three different regions. For small values of the elastic
constants, the fluctuations are determined mainly by the membrane bending
modulus (kc). The mean squares of the spherical harmonics amplitudes of a
freely fluctuating vesicle can be determined from Eq. (25) if the tension (s)
is set to zero. These values are represented by dotted lines in Figs. 4 and 5.
On the other side, the large values of the elastic constants result in the
constrained fluctuations. It was observed that here the mean squares of the
spherical harmonic modes yielded the same values as the “delta function
approach.” The latter are shown as solid lines. Between these two regions,
there is an interval of intermediate fluctuations. As seen from the calculated
data, the width of this intermediate region depends on the normalized
volume of the vesicle.

Comparing Figs. 4 and 5, we note that the introduction of the volume
and area constraints can either increase or decrease the shape fluctuations of
a vesicle. If its shape is close to that of a sphere, the constraints result in
smaller fluctuational amplitudes as given by the bending energy of an
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unconstraint vesicle. For the flaccid vesicle, the constraints may result in the
equilibrium deformation that could already be larger than the unconstrained
fluctuations. Generally, when at a given cutoff value ‘max, the normalized
volume is such that the effective tension (s) is negative, the constrained
fluctuations are larger than the free ones. On the contrary, when the vesicle
shape is sufficiently close to that of a sphere, the effective tension s becomes
positive, and the constant area and volume constraints reduce the ampli-
tudes of the fluctuations. For a given ‘max, there exists a volume for which
the fluctuational amplitudes in the two limiting regions are the same. For
instance, for ‘max ¼ 20, the effective tension is zero if u0 ¼ 0.9883. This
result was also confirmed by our Monte Carlo calculations. This is evident
from Figs. 6 and 7 as well, where the coefficients u22

� �
and u23

� �
are plotted

as a function of the elastic constant k for some values of the normalized
vesicle volume.

Finally, we tried to answer the question: supposing that the fluctuations
of observed vesicles can be well described by the second-order approxima-
tion of constrained fluctuations, how reliable are the experimentally deter-
mined values of the bending modulus? For this purpose, we treated the
mean square values of the Fourier coefficients u2m

� �
that were obtained by
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Figure 6 Dependence of u22
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on elastic constants k as calculated by the Monte Carlo
method for kc ¼ 10�19 J, T ¼ 300 K, ‘max ¼ 20, and various values of the normalized
volume. The horizontal line represents the analytical result for a freely fluctuating
vesicle.
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our Monte Carlo calculations as if they were experimental data. We fitted
Eq. (26) to u2m

� �
for 2 < m � 10 to get the value of the bending modulus

and effective tension. The number of the terms used in the transformation
of spherical harmonic coefficients u2‘

� �
to the Fourier coefficients of the

contour (‘max in Eq. (26)) does not influence the result, as long as it is
sufficiently large. It was always taken to be 100, the value normally used in
our experimental analysis. This procedure gave us the values of the bending
moduli that differed from the “true” one by less than 3% for all the Monte
Carlo results obtained with ‘max > 20.
6. Conclusions

An effective tension model of the thermal fluctuations of phospholipid
vesicles has been derived and its results compared with the results of the
Monte Carlo calculations, considering strict volume and surface area con-
servation. The two approaches yielded very similar results, especially for
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vesicles close to a spherical shape. Here the cutoff value of ‘max was related
to the effective tension and the normalized volume of the vesicle. The
fluctuations of the vesicles of shapes close to that of a sphere are mostly
dominated by the normalized volume whereas those of more flaccid vesicles
are mainly governed by the membrane bending modulus. It was shown that
the intermediate region was well reproduced by the Monte Carlo calcula-
tions, which showed continuous transition between the two analytically
determined limits. It is thus expected that it will also be possible to extend
this method to the study of the thermal fluctuations of more complex
systems.
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